Matriz (matemática)

12/04/2013 15:58

Em matemática, uma matriz m X n é uma tabela de m linhas e n colunas de símbolos sobre um conjunto, normalmente um corpo, F, representada sob a forma de um quadro s. As matrizes são muito utilizadas para a resolução de sistemas de equações lineares e transformações lineares

As linhas horizontais da matriz são chamadas de linhas e as linhas verticais são chamadas de colunas. Logo uma matriz com m linhas e n colunas é chamada de uma matriz m por n (escreve-se m×n) e m e n são chamadas de suas dimensões, tipo ou ordem. Por exemplo, a matriz a seguir é uma matriz de ordem 2×3 com elementos naturais


A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}

Um elemento de uma matriz A que está na i-ésima linha e na j-ésima coluna é chamado de elemento i,j ou (i,j)-ésimo elemento de A. Ele é escrito como ai,j ou a[i,j]. Nesse exemplo, o elemento a1 2 é 2, o número na primeira linha e segunda coluna do quadro.


A = \begin{bmatrix}
    a_{11} & a_{12} & \cdots & a_{1n} \\
    a_{21} & a_{22} & \cdots & a_{2n} \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{m1} & a_{m2} & \cdots & a_{mn}
    \end{bmatrix}

As entradas (símbolos) de uma matriz também podem ser definidas de acordo com seus índices i e j. Por exemplo, a_{i j} = i + j, para i de 1 a 3 e j de 1 a 2, define a matriz 3x2 A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5\end{bmatrix}.

Nas linguagens de programação, os elementos da matriz podem estar indexados a partir de 1 (Fortran, MATLAB, R, etc) ou a partir de 0 (C e seus dialetos). Por exemplo, o elemento a(1,1) em Fortran corresponde ao elemento a[0][0] em C.

Multiplicação por um escalar

A multiplicação por um escalar é uma das operações mais simples que podem ser feitas com matrizes. Para multiplicar um número k qualquer por uma matriz n×m A, basta multiplicar cada entrada aij de A por k. Assim, a matriz resultante B será também n×m e bij = k.aij. Com isso, pode-se pensar também na noção de dividir uma matriz por um número: basta multiplicá-la pelo inverso desse número. Mas essa noção pode ser perigosa: enquanto a multiplicação entre um número e uma matriz pode ser dita "comutativa", o mesmo não vale para a divisão, pois não se pode dividir um número por uma matriz.

Por exemplo:

2
  \begin{bmatrix}
    1 & 8 & -3 \\
    4 & -2 & 5
  \end{bmatrix}

=
  \begin{bmatrix}
    2\times 1 & 2\times 8 & 2\times -3 \\
    2\times 4 & 2\times -2 & 2\times 5
  \end{bmatrix}

=
  \begin{bmatrix}
    2 & 16 & -6 \\
    8 & -4 & 10
  \end{bmatrix}

 Adição e subtração entre matrizes

Dado as matrizes A e B do tipo m por n, sua soma A + B é a matriz m por n computada adicionando os elementos correspondentes: (A + B)[i,j] = A[i, j] + B[i,j].

Por exemplo:


  \begin{bmatrix}
    1 & 3 & 2 \\
    1 & 0 & 0 \\
    1 & 2 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 & 5 \\
    7 & 5 & 0 \\
    2 & 1 & 1
  \end{bmatrix}

=
  \begin{bmatrix}
    1+0 & 3+0 & 2+5 \\
    1+7 & 0+5 & 0+0 \\
    1+2 & 2+1 & 2+1
  \end{bmatrix}

=
  \begin{bmatrix}
    1 & 3 & 7 \\
    8 & 5 & 0 \\
    3 & 3 & 3
  \end{bmatrix}

Para melhorar a forma de calcular, você pode reescrever a segunda matriz, revertendo seus elementos, onde o elemento (-1) passará para (1) e o elemento (2) passará para (-2) e assim sucessivamente. Após feito isso, além de fazer A-B, você usará A+B.

Lembre-se: Você só pode fazer isso com Matriz negativa, onde recebe o sinal negativo, por exemplo: em -A+B, o A que poderá ser reescrito.

 Multiplicação de matrizes

Multiplicação de duas matrizes é bem definida apenas se o número de colunas da matriz da esquerda é o mesmo número de linhas da matriz da direita. Se A é uma matriz m por n e B é uma matriz n por p, então seu produto AB é a matriz m por p (m linhas e p colunas) dada por:

 (AB)[i,j] = A[i,1]  B[1,j] + A[i,2]  B[2,j] + ... + A[i,n]  B[n,j]

para cada par i e j.

Por exemplo:


  \begin{bmatrix}
    1 & 0 & 2 \\
    -1 & 3 & 1 \\
  \end{bmatrix}
\times
  \begin{bmatrix}
    3 & 1 \\
    2 & 1 \\
    1 & 0
  \end{bmatrix}

=
  \begin{bmatrix}
     (1 \times 3  +  0 \times 2  +  2 \times 1) & (1 \times 1   +   0 \times 1   +   2 \times 0) \\
    (-1 \times 3  +  3 \times 2  +  1 \times 1) & (-1 \times 1   +   3 \times 1   +   1 \times 0) \\
  \end{bmatrix}

=
  \begin{bmatrix}
    5 & 1 \\
    4 & 2 \\
  \end{bmatrix}

É importante notar que a comutatividade não é garantida; isto é, dadas as matrizes A e B com seu produto definido, então geralmente ABBA.